In [1]:
# rm(list=ls())
options(OutDec = ",")
#============================================================================
# Exemplo sobre a variancia do estimador do coeficiente angular do
# modelo de regressao: y = beta0 + beta1*x + epsilon,
# para tamanhos de amostra 1000
# aula_01.pdf
#============================================================================
set.seed(12345)
n <- 1000 # Tamanho de cada amostra
beta0 <- 0.5 # Intercepto
beta1 <- 0.5 # Coeficiente angular
sigma <- 0.5 # Desvio padrao do erro
epsilon <- rnorm(n,0,sigma)
# primeira regressao, variancia de x "pequena"
x1 <- rnorm(n,0,1)
y1 <- beta0 + beta1*x1 + epsilon
# segunda regressao, variancia de x "grande"
x2 <- rnorm(n,0,2)
y2 <- beta0 + beta1*x2 + epsilon
xseq <- seq(-6.5,6.5,length=500)
yseq <- beta0 + beta1*xseq
In [2]:
par(mfrow=c(1,1),lwd=2.0,cex.lab=1.5,cex.axis=1.3,lab=c(10,10,5),
mar=c(5,5,2,2.5),cex.main=2.0,bty="n")
plot(x1,y1,pch="*",xlab=expression(x),ylab=expression(y),
xlim=c(-6.5,6.5),ylim=c(-4,4))
lines(xseq,yseq,col=2,lwd=2)
text(-5,3,"n = 1000")
In [3]:
par(mfrow=c(1,1),lwd=2.0,cex.lab=1.5,cex.axis=1.3,lab=c(10,10,5),
mar=c(5,5,2,2.5),cex.main=2.0,bty="n")
plot(x2,y2,pch="*",xlab=expression(x),ylab=expression(y),
xlim=c(-6.5,6.5),ylim=c(-4,4))
lines(xseq,yseq,col=2,lwd=2)
text(-5,3,"n = 1000")
In [4]:
# Somas de quadrados
print(sum((x1-mean(x1))^2))
print(sum((x2-mean(x2))^2))
[1] 1015,759 [1] 3657,902
In [5]:
#============================================================================
# Fim
#============================================================================